Great article from National Academy of Sciences on PFRC

We recently learned of this great article written on FRCs and the PFRC in particular: “Small-scale fusion tackles energy, space applications”. It was posted on the website for the Proceedings of the National Academy of Sciences (PNAS) in 2020.

https://www.pnas.org/doi/10.1073/pnas.1921779117

The article is well written and provides information on the PFRC innovation, fusion fuel choice, and development plan. It does a great job explaining the heating methods of the main FRC approaches in industry today: the RF-heated PFRC, the beam-heated TAE approach, and the merged-and-compressed Helion Energy approach. Dr. Sam Cohen, Stephen Dean, Michl Binderbauer (TAE), and Michael Paluszek are quoted.

Cohen, for his part, has been pursuing his Princeton Field Reversed Configuration (PFRC) design since 2002, with a strong emphasis on simplicity and compactness… The idea, says Cohen, is to drive oscillating currents through these coils in a way that sets up a rotating magnetic field inside the tube: a loop of flux that whirls through the plasma like a flipped coin and drags the plasma particles around and around the waist of the cylinder. In the process, he says, “the fields create, stabilize, and heat the FRC”—all in a single deft maneuver.

Small-scale fusion tackles energy, space applications, M. Mitchell Waldrop, January 28, 2020, 117 (4) 1824-1828

Read and enjoy!

New FRC Journal Paper is an Editor’s Pick at Physics of Plasmas

PFRC inventor Dr. Sam Cohen and his student Taosif Ahsan have published a new journal paper, “An analytical approach to evaluating magnetic-field closure and topological changes in FRC devices,” in Physics of Plasmas (Phys. Plasmas 29, 072507 (2022)). The paper is an Editor’s Pick and has important implications for confining plasma in Field-Reversed Configurations (FRCs).

We describe mathematical methods based on optimizing a modified non-linear flux function (MFF) to evaluate whether odd-parity perturbations affect the local closure of magnetic field lines in field-reversed configurations. Using the MFF methodology, quantitative formulas are derived that provide the shift of the field minimum and the threshold for field-line opening, a discontinuous change in field topology.

Paper Abstract

This paper follows up on a 2000 paper by Cohen and Milroy, which made qualitative assertions about changes in magnetic field topology, e.g., movement of the center of separatrix, separator line, and other geometric parameters. Ahsan and Cohen developed the modified flux function (MFF) mathematical tool to quantitatively understand the effects of perturbations on a Solov’ev FRC field structure.  The analytical results from this function have reproduced the previous numerical observation that small odd-parity perturbation preserves FRC field structure. In particular, the contours around the equilibrium stay closed.

Closure of magnetic field lines limits plasma losses that would occur due to charged particles leaving the FRC by traveling along open field lines. The paper points out that in a reactor-scale FRC where ions have a large gyroradius relative to the field structure, but electrons have a small radius and follow the field lines, particle and energy losses on the open field lines outside the FRC will be significant. Hence, ensuring closure of field lines is a crucial step toward improved plasma confinement in FRCs.

3D contours of a perturbed FRC using the modified flux function (MFF)