Hi! I’m Paige, and I’m an undergraduate at Princeton interested in physics and science communications. This January, I got to work as an intern here at Princeton Satellite Systems. These past few weeks, I’ve been writing about the fusion-related projects PSS is working on, such as their Princeton Field-Reversed Configuration (PFRC) fusion reactor concept and plans for a space propulsion engine.
My first task was to write a four-page report on the PFRC, including its design, market demand, and development timeline. I knew very little about fusion coming into this internship, so first I had to learn all I could about the process that powers the sun and has the potential to supply the earth with clean, practically limitless energy.
Various types of fusion reactors are under development by companies and coalitions all over the world; they differ in the reactors they use and their methods of confining and heating plasma. ITER, for instance, is an example of a tokamak under construction in France; it uses superconducting magnets to confine plasma so that the reaction of tritium and deuterium can occur.
The PFRC, currently in the second stage of experiments at the Princeton Plasma Physics Laboratory, uses radio frequency waves to create a rotating magnetic field that spins and heats the plasma inside, which is contained by closed magnetic field lines in a field-reversed configuration resulting from the opposition of a background solenoidal magnetic field to the field created by the rotating plasma current. The fusion reaction within the PFRC is that of helium-3 and deuterium, which offers multiple advantages over reactions involving tritium. Compared with other fusion reactors, the PFRC is incredibly compact. It will be about the size of a minivan, 1/1000th the size of ITER; this compactness makes it ideal for portable or remote applications.
After learning about the design and market applications of the PFRC, I created a four page brochure about PFRC, writing for a general audience. I included the basics of the reactor design and its advantages over other reactors, as well as market estimates and the research and development timeline. I went on to write four page brochures about PSS’s Direct Fusion Drive engine, which will use PFRC technology for space propulsion purposes, and GAMOW, the program under which PSS is collaborating on developing various power electronics for fusion reactors.
These past few weeks have been quite informative to me, and I realized how much I loved writing about science and technology! I learned all about fusion, and I especially loved learning the details of the PFRC reactor design. To summarize the design, research, and development of the PFRC and other technologies within four page flyers, I had to learn how to write about technology and research comprehensively and engagingly for a general audience, which improved my science communication skills.